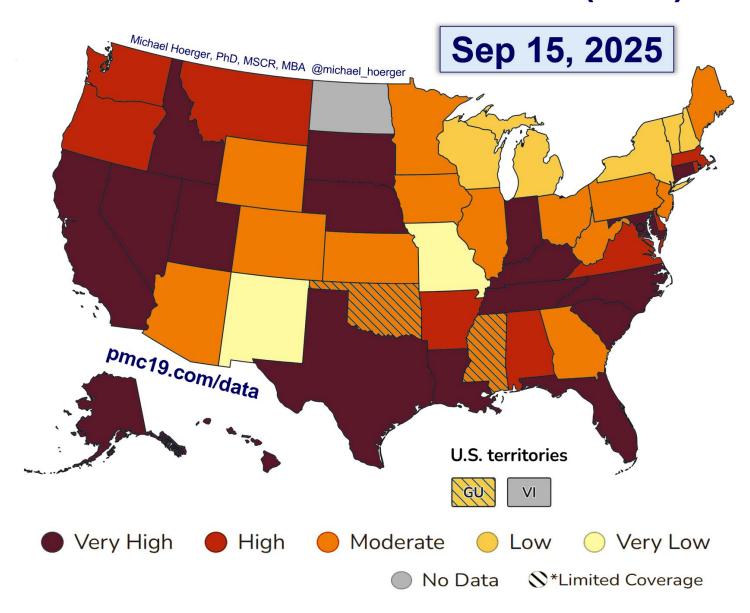

PMC U.S. COVID-19 Report for September 15, 2025. pmc19.com/data

Michael Hoerger, PhD, MSCR, MBA, Pandemic Mitigation Collaborative (PMC)

Cite as: Hoerger, M. (2025, September 15). *PMC U.S. COVID-19 Report for September 15, 2025*. Pandemic Mitigation Collaborative. http://www.pmc19.com/data

Announcements


Popular and News Media Coverage:

- Comedian Francesca Fiorentini with a public health roundup on YouTube, mentioning PMC late in the clip:
 - https://www.youtube.com/watch?v=yhr6Kwgrnhs
- Back-to-School Health Forum 2025: https://www.youtube.com/watch?v=n5 RRRMS HU
- COVID Safety for Schools: https://youtube.com/watch?feature=shared&v=7q5CDiCXn7E
- The TODAY Show is tracking vaccinations and transmission, including using the PMC dashboard: https://www.today.com/health/coronavirus/covid-2025-summer-surge-rcna218754

Data Quality

Note that the CDC and Biobot made major retroactive upward corrections to the
estimated levels they reported a week ago, 5% and 31%, respectively.
Corrections of 1-2% are common, 5% large, and 10% very large and rare. Our
95% confidence intervals assume retroactive corrections are within 10% for 95%
of CDC and Biobot real-time estimates. With the extreme volatility, expect PMC
estimates to bounce around more than usual as real-time data come in and are
later corrected.

COVID-19 Heat Map, Based on CDC Wastewater Data and Levels (U.S.)

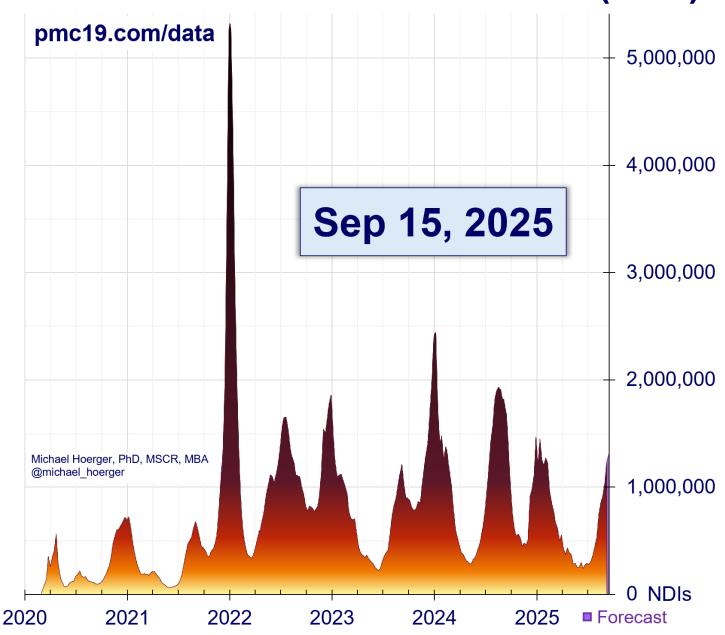
Transmission is High or Very High in the majority of states, including 27 states and D.C. Transmission is shifting from the South and West toward other regions. The data underlying this map are a week old, and levels have likely already peaked in several states.

COVID-19 State Prevalence Estimates

pmc19.com/data			Chance	es anyo	ne is int	ectious
		PMC Estimate, %	in a roc	om of 10	to 100	people
State	CDC Level	Actively Infectious	10	25	50	100
Alabama	High	1 in 30 (3.4%)	29%	58%	82%	97%
Alaska	Very High	1 in 22 (4.6%)	38%	69%	91%	>99%
Arizona	Moderate	1 in 40 (2.5%)	23%	47%	72%	92%
Arkansas	High	1 in 28 (3.6%)	31%	60%	84%	97%
California	Very High	1 in 21 (4.8%)	39%	71%	92%	>99%
Colorado	Moderate	1 in 50 (2.0%)	18%	39%	63%	87%
Connecticut	Very High	1 in 19 (5.3%)	42%	75%	94%	>99%
Delaware	High	1 in 33 (3.0%)	26%	53%	78%	95%
District of Columbia	Very High	1 in 17 (6.0%)	46%	79%	96%	>99%
Florida	Very High	1 in 24 (4.2%)	35%	66%	88%	99%
Georgia	Moderate	1 in 46 (2.2%)	20%	42%	66%	89%
Guam	Low	1 in 64 (1.6%)	15%	33%	55%	79%
Hawaii	Very High	1 in 26 (3.8%)	32%	62%	86%	98%
Idaho	Very High	1 in 14 (7.3%)	53%	85%	98%	>99%
Illinois	Moderate	1 in 44 (2.3%)	20%	44%	68%	90%
Indiana	Very High	1 in 16 (6.1%)	47%	79%	96%	>99%
lowa	Moderate	1 in 40 (2.5%)	22%	47%	72%	92%
Kansas	Moderate	1 in 45 (2.2%)	20%	43%	68%	90%
Kentucky	Very High	1 in 25 (4.0%)	33%	64%	87%	98%
Louisiana	Very High	1 in 20 (5.0%)	40%	72%	92%	>99%
Maine	Moderate	1 in 50 (2.0%)	18%	40%	64%	87%
Maryland	Very High	1 in 25 (4.0%)	34%	64%	87%	98%
Massachusetts	High	1 in 36 (2.8%)	25%	51%	76%	94%
Michigan	Low	1 in 98 (1.0%)	10%	23%	40%	64%
Minnesota	Moderate	1 in 40 (2.5%)	22%	47%	72%	92%
Mississippi	Moderate*	1 in 44 (2.3%)	20%	44%	68%	90%

^{*} Limited data reporting

COVID-19 State Prevalence Estimates


pmc19.com/data

Chances anyone is infectious in a room of 10 to 100 people

		PMC Estimate, %	in a roo	om of 10	to 100	people
State	CDC Level	Actively Infectious	10	25	50	100
Missouri	Very Low	1 in 109 (0.9%)	9%	21%	37%	60%
Montana	High	1 in 36 (2.8%)	24%	50%	75%	94%
Nebraska	Very High	1 in 18 (5.5%)	43%	75%	94%	>99%
Nevada	Very High	1 in 17 (5.9%)	46%	78%	95%	>99%
New Hampshire	Low	1 in 64 (1.6%)	15%	32%	54%	79%
New Jersey	Moderate	1 in 56 (1.8%)	16%	36%	59%	83%
New Mexico	Very Low	1 in 106 (0.9%)	9%	21%	38%	61%
New York	Low	1 in 73 (1.4%)	13%	29%	50%	75%
North Carolina	Very High	1 in 17 (5.8%)	45%	78%	95%	>99%
North Dakota	High*	1 in 32 (3.2%)	27%	55%	80%	96%
Ohio	Moderate	1 in 47 (2.1%)	19%	41%	66%	88%
Oklahoma	Moderate*	1 in 44 (2.3%)	20%	44%	68%	90%
Oregon	High	1 in 31 (3.2%)	28%	56%	80%	96%
Pennsylvania	Moderate	1 in 44 (2.3%)	20%	43%	68%	90%
Rhode Island	High	1 in 30 (3.3%)	29%	57%	82%	97%
South Carolina	Very High	1 in 15 (6.6%)	50%	82%	97%	>99%
South Dakota	Very High	1 in 24 (4.2%)	35%	66%	88%	99%
Tennessee	Very High	1 in 17 (6.0%)	46%	79%	95%	>99%
Texas	Very High	1 in 21 (4.8%)	39%	71%	91%	>99%
Utah	Very High	1 in 16 (6.4%)	48%	81%	96%	>99%
Vermont	Low	1 in 74 (1.3%)	13%	29%	49%	74%
Virginia	High	1 in 28 (3.6%)	31%	60%	84%	97%
Washington	High	1 in 27 (3.8%)	32%	62%	85%	98%
West Virginia	Moderate	1 in 51 (2.0%)	18%	39%	63%	86%
Wisconsin	Low	1 in 63 (1.6%)	15%	33%	55%	80%
Wyoming	Moderate	1 in 44 (2.3%)	21%	44%	69%	90%

^{*} Limited reporting; North Dakota has no data and uses the average of MN, MT, & SD

SARS-CoV-2 New Daily Infections, Wastewater-Derived Estimates (U.S.)

The U.S. is experiencing an 11th COVID wave as vaccines are being restricted. Estimated new daily infections exceeded 1.2 million on Saturday, September 6, the last date with real-time data. With the retroactive corrections from the CDC and Biobot, we now estimate a peak at 1.3 million on Saturday, September 13.

National COVID-19 Estimates (U.S.)

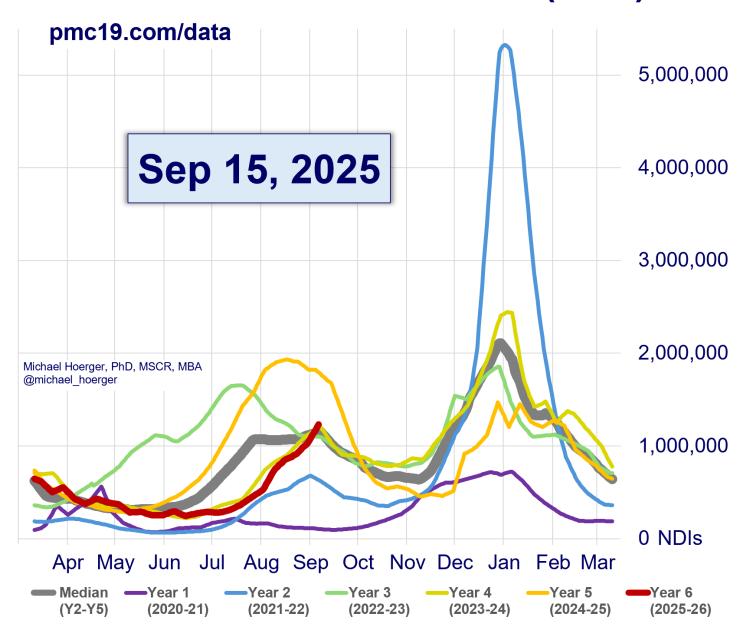
Sep 15, 2025

pmc19.com/data

Infections		4 •	
		t 1 🔿	nc
	IEC.		

Proportion Actively Infectious	1 in 38 (2.7%)
New Daily Infections	1,301,000
Infections the Past Week	9,030,000
Infections in 2025	172,000,000
Cumulative Infections per Person	4.63

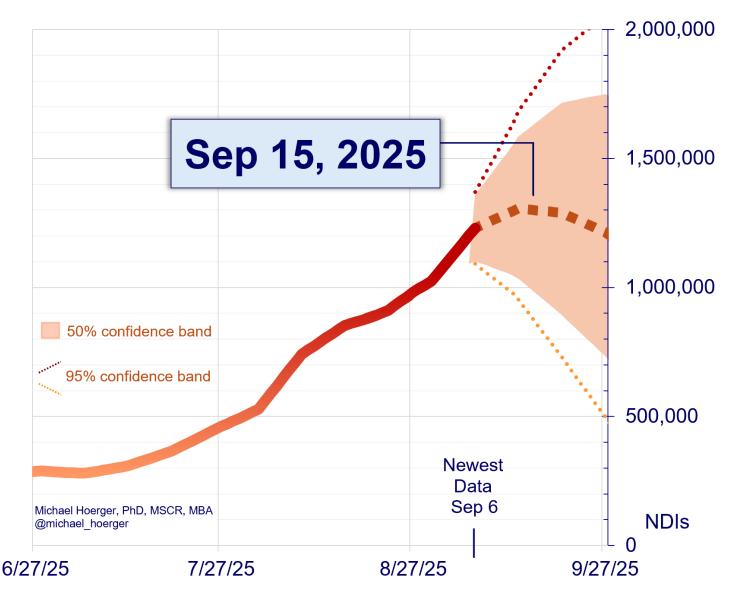
Long COVID


Long COVID Cases Resulting from New Daily Infections	65,000 to 260,000
Long COVID Cases Resulting from New Weekly Infections	452,000 to 1,810,000

Excess Deaths

Excess Deaths Resulting from New Daily Infections	370 to 610
Excess Deaths Resulting from New Weekly Infections	2,500 to 4,200

New daily infections are flat at around 1.2 to 1.3 million, with new weekly infections at approximately 9 million. The week's infections are expected to result in up to 4,200 excess deaths. We are submitting a manuscript on U.S. excess deaths this week.


SARS-CoV-2 Year-Over-Year Estimates of Transmission (U.S.)

Current transmission (red) has closely tracked that of year 4 (yellow). Data through September 6th are shown. If transmission drops sharply, like in year 4, September 6th would be the peak. Otherwise, we would have the latest U.S. summer peak so far.

SARS-CoV-2 Transmission Forecast, Wastewater-Derived Estimates (U.S.)

pmc19.com/data

Last week we noted the following as a plausible scenario. "A very large retroactive correction could shoot the peak substantially higher." In fact, transmission was retroactively corrected upward, and that creates more uncertainty about the timing of the peak between the 6th and 13th.

The central projection for the current forecast appears to show a plateau heading into a gradual decline in transmission. However, it is best to consider this as an average scenario that must account for both a sudden drop as well as the possibility of continued increases.

Scenario #1: Peak on September 6 (approximately 40% chance). This would be similar to year 4 (see year-over-year graph), with a sharp, pointed peak. The peak would be estimated at approximately 1.25 million new daily infections.

Scenario #2: Peak on September 13 or late (approximately 60% chance). This would more resemble years 3 and 5, where transmission came down more gradually. The peak would be estimated at approximately 1.30 million new daily infections.

The truth may be somewhere in between, but the data only update weekly, so that level of precision is rarely possible. More importantly, transmission varies considerably regionally, so track local data closely.

Finally, note that significant transmission occurs post-peak, so ongoing multi-layered mitigation remains key. We advocate for national policy to increase vaccine eligibility and access across the nation, not merely in select states. Dr. H. has volunteered to speak at ACIP, and if selected through the lottery system, will focus comments on ongoing and long-term excess mortality.

A separate document called a Technical Appendix appears on the dashboard page and has more methodologic info. Search for key answers there first, and then send a public comment tagging Dr. H. on Twitter if further help is needed.